欢迎来到中细软旗下技术转移平台

我的成果我的需求在线客服

服务热线:400-700-0065

榜单 | 2023年诺贝尔化学奖揭晓!他们让元素周期表从此有了第三个维度

2023-10-072137来源:科创中国

2023年10月4日北京时间17时45分许,瑞典皇家科学院在斯德哥尔摩宣布,将2023年度诺贝尔化学奖授予美籍法国-突尼斯裔化学家莫吉·G·巴旺迪(Moungi G. Bawendi),美国化学家路易斯·E·布鲁斯(Louis E. Brus)和俄罗斯物理学家阿列克谢·埃基莫夫(Alexei I. Ekimov),以表彰他们发现和合成量子点。

  2023年10月4日北京时间17时45分许,瑞典皇家科学院在斯德哥尔摩宣布,将2023年度诺贝尔化学奖授予美籍法国-突尼斯裔化学家莫吉·G·巴旺迪(Moungi G. Bawendi),美国化学家路易斯·E·布鲁斯(Louis E. Brus)和俄罗斯物理学家阿列克谢·埃基莫夫(Alexei I. Ekimov),以表彰他们发现和合成量子点。

  

640.jpg


  什么是量子点?

  一般来说,胶体纳米晶是尺度在1-100nm的晶体以亚稳态的形式存在于溶液中的片段。由于其物理尺寸与许多性质的临界尺寸相近、可观的表面原子比等特点,胶体纳米晶的诸多性能都呈现出尺寸相关的独特现象。传统意义上来说,胶体纳米晶主要分为贵金属胶体纳米晶与半导体胶体纳米晶。根据经典的量子限域效应,当半导体胶体纳米晶的几何半径小于其体相材料的激子波尔半径时,价带和导带的能级会呈现离散分布形式,此时纳米晶的性质变得与尺寸相关。于是,经典的研究将半径尺寸小于或接近激子波尔半径的半导体纳米晶称之为量子点。

  

640 (1).jpg


  量子点的结构(表面与核)

  量子点合成化学的发展

  量子点领域蓬勃发展的基础是量子点合成化学:应用现代化学的合成方法和思想,为整个领域提供了结构多样、性能丰富的高质量材料。

  得益于Brus教授卓越的领导才能和Bell实验室优异的合作氛围,胶体量子点合成化学的主要进展也始于Bell实验室。1986年,Louis E. Brus和当时的助手Paul Alivisatos和Michal Steierwald开始了胶体量子点的金属有机化学合成。1988年Moungi G. Bawendi加入到团队中。后来,Paul Alivisatos和Moungi G. Bawendi分别成为独立PI,加入加州大学伯克利分校和麻省理工学院,发起了或许是量子点研究领域最著名的两个课题组,为领域培养了诸多的人才。

  量子点合成化学在1990年到1993年之间取得了一次突破,出现了一种 “金属有机-配位溶剂-高温”合成路线。这个方法发明于Bell实验室,成熟于Moungi G. Bawendi在MIT的课题组。它以二甲基镉作为镉源,在高温(300摄氏度左右)、有机配位溶剂中合成高质量的硒化镉量子点。该方法对于整个量子点领域的研究都具有里程碑式意义。Moungi G. Bawendi也因此分享了诺贝尔奖!但由于该合成路线借鉴于“金属有机气相沉积”方法,使用了高毒性、具有爆炸性的原料——二甲基镉,不利于大规模推广。

  这个局面在2000年左右被中国学者彭笑刚教授所突破。彭笑刚在1994年加入Paul Alivisatos课题组从事博士后,并在1999年加入阿肯色大学化学系开始独立研究。基于对反应机理的深刻认识,彭笑刚课题组以稳定易得的氧化物或羧酸盐为前体,开发出一种基于安全无毒的非配位溶剂的“绿色”合成路线。新合成路线的发展使得量子点的合成逐渐走向全世界的实验,并在工业界得到推广。

  与此同时,量子点的生长机理、核壳结构工程和表面配体化学等基础科学问题也被化学家们广泛地探索。这些基础研究的进展使得高质量的量子点从II-IV族CdSe量子点逐步扩大到其它种类半导体化合物,如PbS量子点、InP量子点、CuInS2量子点等。2015年,钙钛矿量子点的出现突破了上述量子点需要高温合成的限制。利用钙钛矿的离子特性带来的溶解度差异,可以在聚合物基质中室温再沉淀或者原位制备量子点,给光学应用带来了新的发展机遇。

  得益于合成化学的进展,量子点这个材料家族还在不断地壮大。量子点的形貌、结构调控手段日趋丰富,具有特异性能的功能单元不断产生。

  量子点的用途

  三十年后的现在,量子点已成为纳米技术的重要工具,并出现在商业化的产品中。研究人员主要利用量子点来产生彩色光。如果用蓝光照射量子点,它们会吸收光并发出一种不同的颜色。通过改变粒子的大小,我们可以精准确定它们的发光颜色。

  量子点的发光特性被用于基于QLED技术的计算机和电视屏幕,其中Q代表量子点。在这些屏幕中,蓝光是使用获得2014年诺贝尔物理学奖的节能二极管产生的。量子点被用来改变部分蓝光的颜色,将其转换为红色或绿色。这让电视屏幕获得了显示图像所需的三基色光。

  一些LED灯也使用了量子点来调节二极管的冷光。这让光线既能像日光一样充满活力,又能使其像暗淡灯泡发出的暖光一样平静。量子点发出的光也可用于生物化学和医学。生物化学家将用量子点与生化分子相连接,以便绘制细胞和器官图谱。医生已经开始研究用量子点追踪体内肿瘤组织的潜在效用。化学家利用量子点的催化特性来驱动化学反应。

  量子点正在将其对人类的利益最大化,而我们才刚刚开始探索它的潜力。研究人员相信,未来量子点可以为柔性电子产品、微型传感器、更纤薄的太阳能电池以及加密量子通信做出贡献。有一点是肯定的——关于令人惊奇的量子现象,还有很多未知须要探索。因此,如果 12 岁的多萝西正在寻找冒险,纳米世界可以提供很多东西。

  来源:科创中国


声明:本网站文章来源于网络转载,转载目的在于传递更多信息。如涉及文章内容、版权和其它问题,请及时与我们联系,我们将在第一时间删除内容!

更多> 推荐专利

新风净化器
外观专利专利号:2016304266112
一种新风净化装置
实用新型专利号:2016209577413
空气净化装置
实用新型专利号:2016209592235
新风净化装置
实用新型专利号:2016209591567
新风净化机
实用新型专利号:2016209486448
一种移动式室内环境洁净机器人
实用新型专利号:2016209486452
新风净化设备
实用新型专利号:2016209591444
具有电动灌装洁净空气功能的清洁机器人
实用新型专利号:2016209576919
具有手动灌装洁净空气功能的环境洁净机器人
实用新型专利号:2016209486819
空气净化器
外观专利专利号:201730349118X

我要找专利

请输入正确的手机号

专利类型

登录成功

您的咨询我们已收到,稍后会有专业顾问与您联系。